Shellfish and Climate Change

Ecological and Economic Effects

* * * * * *

Washington State Climate Conference

Dan Cheney and Bill Dewey Pacific Shellfish Institute Olympia, Washington

Extent and Range of Shellfish Stocks and Harvests

- Oysters, clams, mussels, geoducks and other bivalves
- Crab, shrimp, sea urchins, sea cucumbers, octopus and abalone
- Other invertebrates (shellfish)
 - There are 1,000s of additional taxa or types ranging from the smallest zooplankton to giant squid
 - Many are important in the food chain or life history of harvested shellfish, fish and wildlife

Economic value – farmed bivalve shellfish

	OYSTERS	CLAMS	MUSSELS	GEODUCK	TOTAL
Wash:	77 mil lbs	7 mil lbs	1.5 mil lbs	400,000 lbs	85.9 mil lbs
	\$57.75 mil	\$14 mil	\$1.73 mil	\$2.5 mil	\$75.98 mil
Calif:	10 mil lbs	6,000 lbs	600,000 lbs	No Record	10.61 mil lbs
	\$7.5 mil	\$12,000	\$1.05 mil		\$8.56 mil
Oregon:	5 mil lbs	No Record	No Record	No Record	5 mil lbs
	\$3.75 mil				\$3.75 mil
Alaska:	920,000 lbs	41,000 lbs	3,000 lbs	No Record	964,000 lbs
	\$400,192	\$115,038	\$5,419		\$523,060
TOTALS:	92.9 mil lbs	7.0 mil lbs	2.1 mil lbs	400,000 lbs	102.5 mil lbs
	\$69.4 mil	\$14.1 mil	\$2.8 mil	\$2.5 mil	\$88.8 mil

Key Environmental Issues

Climate change factors likely to affect shellfish growth, reproduction, distribution, health, and our ability to farm and manage:

- Water temperature
- Sea level change
- Water currents and circulation
- Freshwater runoff
- Extreme events

"Oysterrelated illness linked to warming ocean"

Number of Patients with Vibrio Infection Associated with Oysters

McLaughlin, Joseph B., et al. (2005) Outbreak of *Vibrio parahaemolyticus* gastroenteritis associated with Alaskan oysters. New England J. Med. 353:1463-70.

Mean Daily Water Temperatures in Prince William Sound

Surface-Water Temperatures in July and August in the Gulf of Alaska, 1976 to 2004

Conclusions from Alaska study

- Extends by 1000 km the northernmost documented source of oysters that caused illness due to *Vibrio*
- Rising temperatures of ocean water seem to have contributed to the timing and severity of the event.
- Was one of the largest known outbreaks in the United States, exceeded only by events in Washington and Texas
- Raises concern of more serious water-borne diseases

Shellfish Mortality and Water Temperature

Water temperatures above 66 F or 19 C place oysters at risk

Actual mortalities of yearling oysters in Willapa Bay

General effects of temperature rise

- Possibility for invasive species or diseases to become established
- Changes in the spawning timing and/or intensity more spawning events
- Altered types (+/-) or timing of food resources
- Potential shift of suitable culture environments
- Better working conditions for shellfish farmers during the winter

Sea level change

■ Present condition – 75 days

Sea level change

■ 6 inch rise – 65 days

Sea level change

■ 1 ft rise – 52 days

General effects of sea level rise

- Alters timing and access to shellfish grounds
- Alters optimal growing areas
- May shift optimal growing areas off the farmer's property
- May alter patterns of predation and exposure
- May require modification or replacement of shore-based facilities

Water currents and circulation

"Highest levels of domoic Spartina — 100's of acres in Acid ever recorded in the 1982 to 15,000 + acres in Infand waters prompt 2002 Closure"

General effects of altered water currents

- Movement of toxic algae blooms into coastal and inshore waters
- Changes in nutrient levels and distribution in coastal estuaries
- Modification of larval and juvenile shellfish transport
- Potential for expanded distribution of invasive species

Freshwater runoff

General effects of freshwater runoff

- Reduced salinity of surface waters, with possible mortalities during extreme events
- Increased stratification, especially in circulation-limited waters
- Changes in phytoplankton types or distribution
- Increased shellfish closure periods in areas with water quality restrictions tied to rainfall events

Extreme events

Summary

- Changes (increased) water temperature are already having an effect on shellfish in the PNW
- Sea level rise due to increased temperature coupled with subsidence will alter aquaculture practices
- Increases in invasive species and HABs are likely
- Localized to regional effects are likely with increased freshwater runoff
- Great harm may occur due to major storms